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SUMMARY

This paper attempts at modifying of the bootstrap procedure for precision
estimation of heritability estimates obtained under different family structures
in unbalanced data sets. Parametric bootstrapping is compared against exact
values in variances and bias estimation. The non-parametric bootstrap
confidence intervals are compared with certain intervals available in
literature in the case of half sib and parent offspring. The influence functions
of sire effect in the half sib case are estimated by using jackknife after
bootstrap and further the standard error of bootstrap estimates are obtained.
Results obtained showed overwhelming performance of parametric and
non-parametric bootstrap procedure for various precision parameters of
heritability estimates. It is seen that in comparison to parametric
bootstrapping, the non-parametric bootstrapping is not lagging behind in
terms of information about the precision. The performance of
non-parametric bootstrapping in the case of worst samples is even better
than the theoretically proven good procedure of parametric bootstrapping.
Both parametric and non-parametric bootstrapping perform better than the
approximate procedures of Taylor scries and Smith. Through influence
function it is seen that variance estimation is the more informative procedure
of bootstrap. ’

Key words : Parametric and' non-parametric bootstrapping, Heritability,
Jackknife after bootstrap.

1. Inrroduction

Heritability is one of the most important genetic parameters widely used

in plant and animal breeding studies. However, it is hardly possible to get to
its real value in practical circumstances. It is a well known fact that any estimate
devoid of any measure of its precision is not of much use. Lately attempts
have been made to arrive at the distribution of heritability by using the
distribution of individual variance components. The logic followed is to express
the mean squares which are quadratic forms involving the vector of phenotypic
values as a linear combination of mutually independent chi square variables -
with one degree of freedom each. It can be seen that heritability estimator turns
out to be a function of ratio of chi squares whose distribution function can
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be got as a sum of infinite series involving incomplete beta function (Singh
~ [16], [17]). Using some approximations based on the distribution function, the
exact value of variance of heritability in the one-way data was arrived at by
Singh [17]. Other approximations like those of Smith’s and Taylor series were
widely discussed and compared by Smith (18] and Singh [17]. The confidence
interval estimation also followed almost the same path as that of variance
estimation as reported by Searle [14] and Graybill [10]. Tai [19] derived
confidence intervals of heritability for balanced data wherein the between sires
mean square follows a simple chi square distribution. Complications however
arise, once we deal with an unbalanced data. In such cases the between sires
mean squares has to be expressed as difference between two chi-squares. Exact
confidence intervals for one-way data were discussed in Harville and
Fenech [12] wherein after the derivation of exact interval for practical
computing purposes subsequent approximations were . also mentioned.
Satterthwait type approximations were recommended for two-way nested
unbalanced (Full sib) case by Sen er al. [15]. However in practical situation
such procedures are the near impossibility of calculating the exact confidence
intervals and the coverage probabilities.

In addition to the above, one of the constant nagging problem in all such
estimation procedures is their over dependency on the normality assumptions
and the influence of the sample on the final values. Though in the model
assumptions, the various effects of the components like sires effect and dam
effect are supposed to be random but in a particular data of finite number of
sires/dams a few are expected to be highly influential which is also a worthy
area to concentrate upon. Thus a distribution studying procedure which is
moderately robust to the sample fluctuations will be useful for such situations.
The Bootstrap method is. one such method which can be attempted for such
problems. After bootstrapping one can also get jackknife after bootstrap
estimates for the precision. _ : S

Although the concept of bootstrapping originated with an one sample
problem in mind but there are many situations which warranted their
applicability in linear models. The applications of this technique on regression
models is available in Efron [7], Hall [11], and the major attempt to apply
bootstrapping in a typical random model case is discussed by Aastveit {1] and
Bhatia et al. [3]). A specific algorithm mentioned by Aastveit is used to estimate
the variance and confidence intervals of heritability by Bhatia er al. [3] and
Bhatia and Jayasankar [2]. One of the short comings of that algorithm is that
it cannot analyse different bootstrap samples arising from unbalanced data for
estimation of heritability and its precision on account of the change in total
number of observations. Also that algorithm is not suitable for the estimation
of heritability from a dam-daughter data.
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The present study therefore attempts at validating parametric bootstrapping
against exact values and comparing_ the performance of non-parametric and
parametric bootstrap estimates for variance and bias estimation. The
non-parametric bootstrap confidence intervals are further compared with certain
intervals available in literature in the half sib data case. The non-parametric
bootstrap is also used to estimate bias, variance and confidence intervals in
the case of parent-offspring data structures. The influence functions of sire effect
in the half sib case is also estimated by using jackknife after bootstrap and
thus the standard error of bootstrap estimates are obtained.

2. Methodology Used

2.1. The naive bootstrap

Bootstrap, a resampling procedure, . shot -into limelight through the
path-breaking paper of Efron [5). The simplicity of the logic, which is based
on the empirical distribution of any d%stn'butjon backed by sound theoretical
justification in the form of Edgeworth ‘expansion, multinomial distribution by
Efron ({6, [7]) and Hall [11], has caught the imagination of applied statisticians
throughout the world. The best part of the bootstrap logic is the approximation
which it admits by the Monte Carlo algorithm (Efron-{7]) and is highly computer

intensive.

In a simple one sample situation let the observed -data
X’ = (X}, Xp, .. X,) be obtained by iid sampling from ar unknown distribution F,
iid . |
F ——— (X %...%)=X

A
The usual nonparametric estimate of F is F, the empirical probability
distribution, putting probability 1/n on each point x;, '

- A .
F : probability 1/nonx;, i=1,2,...,n

A bootstrap sample X" = (x}, X3, . - - X is a random sample of size n drawn

from F,

A . .

F id , (x;”‘;v-;-”‘;) = x"
is used in finding out g = g (x") which is the bootstrap replication of any
statistic involving smooth function g = g(x). The practical Monte Carlo
algorithm for getting the replicate is to draw independently large number (B)
of bootstrap samples, evaluating g™ =g (x"™) for b=1,2,... B and estimating
precision parameters of g(x).
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The bias is estimated by

biasyo. (8) = g* — g(x)
where g™ =1/B rg®
and the sampling variance by
| SVpoo (8 = (1 /(B-1) Z (g™ -g"y

The confidence intervals are estimated by the percentile intervals,

[ g-(o.05)’ g-(0.95) ]

- wherein g'(“) denotes the 100a th percentile of the empirical distribution of
the B bootstrap replications g*°.

2.2. Model based bootstrapping

Efron [7] and Hall [11] described bootstrapping based on residuals of
regression models '

i.e. for the model
y=XpB+e

r=y-XB§ is calculated and resample vectors r* are taken from r and the
bootstrap set is got by y*=X B+r"

The same idea was extended to balanced random models by Aastveit [1]
and Bhatia ef al. [3] wherein for the model

y=ul1+X 7+e

y' is constructed by selecting families at random and repeating all the
observations of a particular sire. But this can not be worked out in the case
of unbalanced data as the total data size will vary in the resamples. Thus there
is a need to use bootstrapping in such a way that the family and within family
effect are selected at random without disturbing the data structure. The
parametric bootstrapping has the assumption about the underlying distribution
and can be the best tool in case the distribution is known correctly. Herein
the sample is only used to estimate the parametric values and not the distribution.
We can generate data from a known distribution, the parametric bootstrapping
can be used as a control against whose performance, the noxi-parametn'c
bootstrap can be compared.

/
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2.3. Bootstrapping for unbalanced data
Let us consider the half sib data analysis.
The model is
Yij = Htsi+e;
~i=1,2,....8
ji=1,2,...n; and Zn; =N
where
¥ij = Phenotypic value of the jlh half sib of i sire

i = general mean

. = effect of i sire
e;; = error effect of (i, j)™ balf sib (iid)
Then
40

= xRy
2
ol + o)

A

For typical inferences it is assumed that s; ~ N (0, oi) and

t;,ij ~ I\I /(\0, Aoﬁ). 12 other words irrespective of the normality assumption
§'=(8),52 853, .. .5) is 2 random sample of size s from the population of sire
effects and §_’ = (@, e 3,2, 313 . 3,‘,,,, cee ems ) is a random sample of size N from
the population of error effects. Under this set up, bootstrapping can be thought
of with the resample vectors being

s¥ = (s}, S5, ...85;)
and e = (€]}, €12+ €lny - -+ Cans)
thus getting the bootstrap phenotypic values as

« _ A * *
yij = u+si+eij
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where ﬁ= y_ the mean of the sample observations. The estimates of sire effects
can be obtained as '

A

S =¥.-y. wherey, =(1/n)Z;y,

and those of error effects by
A

€i=Yij~¥i-Y.

The estimates of heritability obtained from y" are the bootstrap replicates
for h?. The same thing can be extended for full sib data wherein the model
is d two way nested model.

* But in the case of parent—offspring data the algorithm will be different.
The model of analysis is

Pij= My + g + €5 :
O}j = I, +a gy + v (l—az)goi+edij
with i=1,2...8

j=1’2"'pi

where Pij is the phenotypic value of j-th dam mated to i-th sire and OiJ- is the
phenotypic value of the offspring of j-th dam-daughter pair. a is the coefficient
of relationship which is 1/2 in parent-offspring case. From this model it is clear
that this amount of genotypic correlation has to be maintained in the bootstrap
samples. With an aim to achieve this, bootstrap method is proposed as follows.

Two samples of size s each, are taken from the samples
8 = 1+ 8p2r- -+ 8ps) and g, = (25, 8ops - - - Bos ) TESpeclively. Let the

resamples be g* and g°. The error resamples are taken as usual to give e
p gy and g} p ;

and e, The new bootstrap sample is
Plj = iy + gpi + €5

oi‘j = u0+a._g;i+ v a-a% g;ﬁ'e;ij

The main difference here is gy, -is the same for both P} and Of. The

selection of various effecis at random is done by the aid of the built-in random
(0, 1) generator. -
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2.4. Parametric bootstrapping

Apart from the above mentioned non-parametric bootstrapping, parametric
bootstrapping is also done to ‘estimate the 'bias and central moments- of
heritability estimators in the sib analysis case. According to Efron and
Tibshirani [9] for the one sample situation, the bootstrap samples are generated
from the estirmated population Fppg which is the original distribution but with

parametric values estimated from sample.
- * . -
FPAR -——-—) (X], X2, ‘e Xn)

These samples are taken B times and from the B replicates the required
measures are obtained in the same way as mentioned in the non-parametric
case. For the sub data from the original sample the various variance components
like 02, 03,, ole are estimated. Using the estimates as the parametric values, half
sib and full sib data are generated according to . the models given by
Ronningen [13] with the assumption that the random effects follow normal
distribution with mean O and corresponding variances. If the real parametric_
values are known, this parametric bootstrapping reduces to repeated simulation
to data sets of a given size from the same population.

2.5. Identification of influential sires

‘Towards satisfying the need to study the influence of influential sires which
incidentally turn out to be a sample of size s from the population of sires,
the empirical influential functions of sire effects are calculated for a given
sample on the lines of Efron [71. To achieve: this, jackknifing is done on the
B bootstrap replicates without any additional data generation. From the set of
B replicates, the replicates which are got without the i sire effect are regrouped
and from each of the s such groups the various parameters like bias, variance,
90% confidence intervals etc. are calculated. From the s such values of each

parameter the influence U; () and the relative influence U; () are calculated.

where R ‘
U; ) =(6-1) (_f() _Tf(i)) L _
= A
where 7() = (1/s) 74
and .
ut®) = U, B/ (zy, Grs-0)”?
where

- A

T is any -precision parameter under study (Bias, variance etc.) Efron 7.
These influence values also help in getting a jackknife variance estimate of
the bootstrap estimates.
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2.6. Length, normalised length and shape

The various other parameters concentrated apart from bias, variance and
confidence interval of the estimates of heritability are higher order moments,
length, normalized length and shape of the curve as discussed in Efron [71.

Thus if U and L are the upper and lower 90% confidence limits of estnnate
of parameter h? then

Length = U-L
Normalised Length = (U-L)/2x 1.645 V Varggor
and Shape = log, { (U — Median)/ (Median — L) }

3. Results and Discussion _

" The precision of heritability estimators for the different family structures
have been obtained by using bootstrap technique on the simulated data of various
sizes. The parametric, non-parametric bootstrapping and as well as exact
theoretical results are obtained and they are as under :

3.1. Half sib family structure

' §
To compare the precision of the bootstrap estimators with those of the

theoretical estimators, half sib data sets of size 15 and 25 were generated with
three and five sires and at three levels of unbalancedness. A simulated data
set is used in the case of non-parametric bootstrapping with the intention to
knowing the actual value of heritability. With these actual values parametric
bootstrapping was also done. The results for bias estimation were compared
with the actual bias values calculated by Singh [17] and are presented in Table 1
for the case of three sires and in _Table 2 in the case of five sires.

Table 1. True parametric & non- parametric bootstrapping bias of heritability for different
va]ues of h? under different magnitudes of unbalancedness in case of three sires

Degree of

(n; n, ny) unbalancedness. True bias Parametric Non-parametric

h%=0.0

5 5 5§ 0 -0.0438 -0.0234 -0.0116

3 3 9 12 -0.0842 -0.1068 -0.1619

1 1 13 438 -0.8271 . -0.8705 -0.8464
ht=04 ' .

5 5 5 0 —0.1285 -0.0920 —0.1809

3 3 9 12 -0.1741 -0.1979 —0.4225

1 1 13 48 -0.9166 —0.8770 -1.0010
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Table 2. Parametric and non-parametric bootstrapping bias of heritability for different
values of h? under different magnitudes of unbalancedness in case of five sires

Degree of

(g ny Ny ny Ny ancedness Parametric Non-parametric
h2=0.0

5 5 5 5 5 ’ 0 0.0015 T0'0461

3 3 7 7 5 4 -0.0191 -0.0319

1 1 2 2 19 61.5 -0.1587 -0.3920
h*=04

5 5 5 5 5 0 -0.0770 -0.0578

3 3 7 7 5 14 -0.0726 -0.0522

1 1 2 2 19 61.5 -0.2771 —0.4946

From Table 1, where exact bias value is available, it can be noticed that
bias is increasing with the increase in unbalancedness. The degree of
unbalancedness is calculated as follows : '

-

Degree of unbalaﬁcedness =Nn-K)

where N = Zu; is the total data size and n=N/s

and
K=(1/(s—1)) [n-Zn}/N]

The parametric bootstrap values are closer to the exact values due to the
fact that the parametric values are known. The non-parametric bootstrap values
are also not lagging far behind. Both follow the same trend i.e. increase with
the increasing unbalancedness. In the five sire case (Table 2) also, the trend
followed is same but the overall bias values are reduced due to the fact that
the family size and number of sires have increased. One more noteworthy
observation is that lower the degree of unbalancedness the lower are the bias
values both in parametric or non-parametric bootstrapping.

The variance estimates of heritability estimator for the half sib data are
given in the Table 3 for the case of three sires and in Table 4-for five sires.
As the original data is a simulated one we can compare the non-parametric
and parametric bootstrap performances with the exact values and Smith and
Taylor series approximations at the backdrop.
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~

Table 3: Exact, Smith, Taylor series, parametric and non-parametric variances for
different values of heritability in 3 sires

Degree of

(n, n, 'ny) unbalanced- Exact Smith :;:z l(s)r Parametric N‘:é& g:;'a-
ness :
h?=0.0
5 5 §5° 0 0.5799 0.74_67 1.1017 0.6068 1.0042
3 3 9 . 12 0.7781 1.0582 . 1.6265 0.7841 0.9846
1 1 13 48 4.6751 5.7613 6.9984 4.6241 43073
‘ h?=0.4
s 5 5 0 0.8375 1.1854 1.7649 0.8552 0.9479
3 39 12 1.0366 1:6959 2.7104 ,1.0276 1.4458
1 1 13 48 . 4.8238 5.4688 6.7560 - 4.6359 5.0193

Téble 4. Smith, Taylor series, parametric and non-parametric variances for different
values of heritability in 5 sires

@ m g ongong) unt?a(l)’fnrzz;rfess Smith 'l;:élcosr Pemmetrie parlzx(:]r:tric '
5 5 5 5 5 0 0.3840 0.4975 0.5029 021943
3 3 7 7 5 4 0.6427 09784 05296  0.4600
1 1 2 2 19 61.50 1.6434 2.8260 13165 1.2597

From the above two Tables 3 and 4 it can be seen that as the degree of
unbalanceduess increases, the variance also shows up considerably. The
parameter bootstrap variances are the closest to the exact variances followed’
by the non-parametric bootstrap variances. The parametric bootstrap is obtained'
using the population values where as the non-parametric bootstrapping is done
on a finite sample generated with a particular h%. Moreover in some cases the
sample may give inadmissible estimate also, ‘which can not be used for
parametric bootstrapping. Even the approximate variances are calciilated based
upon the population values of o§ and oz. But in practice one can make use

of the sample estimates only, which means a further fall in the precision of
the approximation as discussed in Table 5.
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Table 5. Comparison of parametric and non-parametric bootstrapping.

Ay Approximation | Approximation based Non-parametric
h based on population on sample bootstrap variance

Smith  Taylor | Smith Taylor

0.0 0.9420 04098 05294 00774 2.1814 0.4095
0.4 0.4006 03840 04975 0.1670 0.2240 0.4943
0.8 03834 0.7963 09629  0.1753 0.2349 0.4927

It can be seen from Table S that even with every bad samples the bootstrap
particularly non-parametric extracts better information about the variance. One
more point worth noting is the-highly inflated variance values given by the
Taylor series approximations especially in the extremely unbalanced cases.

The confidence interval estimation always happens to be a ticklish
problems in the case of heritability because there is a danger of getting
inadmissible estimates. While the often suggested remedy to avoid the
inadmissible estimates is to replace the inadmissible ones by the suitable
permissible extremes (0 & 1 in the case of heritability). The soundness of such
intervals is under clouds because of the restrictions. A comparative study was
done to evaluate the performance of non-parametric bootstrap percentile
intervals with those suggested as best by Donner & Walls [4] which is a
symmetric interval based on Smith variance and Harville and Fenech [12] who
have given approximate versions for the exact intervals. For this comparison,
90% intervals are chosen.

Table 6. Confidence intervals and coverage probability for different values of heritability
in the case of 3 sires.

n, n, ny Harville & Fenech CP. Smith Non-parametric ~ C.P.

h?=0.0
[~0.1074, 1.8760] [-1.4151,1.8273] [-0.8863,2.3702] 90
[0.4271, 2.8100) [- 1.6745,0.7881 ] [;1.1503,2.0706] 92
[-1.6027, 2.4148) [-7.1081, 1.7941 ) [-4.4042,2.5609] 90

{-0.1531, 2.0476] {-1.4197, 1.5567] [-0.8461,2.2371)
[0.2321, 0.9850} [-1.1617,3.5291] [-0.9675, 2.8729}
[-0.8927, 1.1816] [-5.2584,2.8464] [-4.0429,3.0636]
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Table 6. shows that as the degree of unbalancedness increases the length
of the interval increases. The coverage probability of Harville-Fenech
approximate intervals is very badly affected by the sample values though the
length is shorter. The coverage of the non-parametric bootstrap estimator is
pretty good with the value lingering around the 90% mark. Though the Smith
interval is expected to give very good coverage, it is badly affected by the
sample by giving unusually longer left tails with rise of unbalancedness.

One more drawback of the Smith intervals is that it assumes the tails to
be equidistant from the sample estimate, which is not so in the case of
heritability estimates. The following discussion throws some light in the nature
of the distribution.

The cases of three and five sires are considered with population heritability
values at 0.4 and 0.8. The percentile intervals alongwith the length, normalized
length and shape statistics are obtained and are given in Table 7.

Table 7. Length, normalised length and shape for bootstrap estimates of heritability

momony ngong SOTERE Lengn NOmEREd Shape
3 Sires i

h’=0.4 4

5 5 5 (-0.8461,2.2371]  3.0832 0.9625 0.4468
3 3 9 [-0.9675,2.8729]  3.8404 0.9708 -0.1006
1 1 13 [-4.0429,3.0636]  7.1065 09641 @ —0.6350
5 Sires

h’=04

S S 5 5 5 [-07079,15675] 22754 0.9837 0.2126
3 3 7 7 5 [-0.6980,15712] 22692 1.0169 0.4022
1 1 2 2 19 [00335 3.6882] 3.6527 0.9892 -1.6356
h’=0.8

5 5 5 5 5 [-0.63351.6267] 22602 09738 0.3673
3 3 7 7 5 [-02362,2.4735] 2.7097 0.9920 —0.0484
1 1 2 2 19 [-1.4051,2.6037] 4.0088 1.0154 -0.1925

From the Table 7 it can be observed that in general the length of the
confidence interval increases with increase in the degree of unbalancedness.
Moreover the shape factor denotes that as the data gets highly unbalanced, the
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length of the right tail with respect to median gets shortened in comparison
with the left tail. Regarding normalized length which is the ratio of the actual
length and that of symmetric interval, where in the estimates are assumed to
be normally distributed, is almost near unity for all the cases. This implies
that percentile intervals are behaving in a similar way as that of classical
confidence intervals following normal theory.

;l‘he;\ changes undergone by the two estimates of variances components
viz. 03, 0: and the estimate of heritability due to change in unbalancedness

for a three sire case are shown in Figure 1,2 and 3 by way of histogramé. .

A ,
From the Figures it can be noticed that the distribution of oz is almost

§\ymmetric and almost unaffected by this type of data. But the distn'butjog,of
of is skewed with a longer right tail. The most important impact is on the

distribution of f 2 wherein the heavy left tail slowly vanishes with the creation
of heavy right tail as the degree of unbalancedness increases. The spread of

the f 2 distribution gives us the idea as to why the Harville-Fenech’s confidence
interval is giving a low percentage coverage. It also sufficiently shapes up the
symmetry assumption of the Smith confidence interval estimate.
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Fig. 1. Distribution of estimates of sire variance for varying degree of unbalancedness
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3.2. Parent offspring family structure -

"Using the modified bootstrap algorithm, samples generated with five sires
each having different number of darn-daughter pairs and with population
heritability values 0.0, 0.4 and 0.8 were bootstrapped and the results are given
in Table 8.

Table 8. Bias, variance and 90% confidence interval for different dam-daughter pairs for

given heritability

No. of pairs/sires Bias Variance 90%§;r;fa<ience

h%=0.0

5 5 55 5 0.0025 0.1490 [~0.6409, 0.6499]
(0.1363)

3 3 7 75 00015 - 0.2937 [~0.8605, 0.8815]
(0.2773)

1 1 2 2 19 0.0047 0.2467 [-0.7879, 0.7954]

‘ (0.2351)

h?=0.4 °

5 5 5 5 5 0.00245 0.1086 (-0.5351,0.5362]
(0.1020) »

3 3 7 15 0.000755 0.1543 [-0.6394, 0:6174]
(0.1119)

1 1 2 2 19 0.003657 0.1523 [-0.6210, 0.6607)

W=08 (0.1330)

5 5 5 5 5 0.002309 03122 [-0.9170, 0.9245)
(0.2769)

3 3 7 7 5 0.008681 03187 © [-0.9212,0.8900]
(0.2455) _

11 2 2 19 0.000487 0.1470 [0.6378, 0.6000]
(0.1185) ‘

Figures in the parentheses indicate the theoretical values of the estimate of variance of
heritability estimator.

It may be noticed from Table 8 that there is an almost zero bias and
closeness of bootstrap variance estimates with the theoretical ones. This implies
that intra-sire regression method gives-unbiased estimate of heritability. The
variation in the heritability and the length of the confidence interval is very
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less due to change in the number of pairs per sire. One more noteworthy feature
is the lying of the upper limit in the admissible range whereas the lower limit
expands to the left as the heritability value increases. This advocates that if
the data on dam-daughters are available then one should always go for intra-sire
regression method.

3.3. Influence of sire effects

Taking clue from Efron [7] an attempt was made to study the influence
of sire effects which are originally considered to be random upon the various
precision estimates. The approximate jackknife influence values and the relative
influence values for bias, variance, length of 90% percentile interval and shape
are calculated and are given in Table 9. The case taken was a 10 sire half
sib data. The original bootstrap estimates are given in Table 9 alongwith the
Jackknife-after-bootstrap estimate of standard error for the various statistics. The
latter is obtained as

A o~
Sepac M = [X T; (1 /s(s-1))'
where f:’g (1) is the jackknife influence function and s is the number of sires.

Table 9. Influence fihction of different statistics of precision

Length of 90%
Sire No. Bias Variance confidence Shape
interval

1 0.1389 00751 . —03642 -0.3569

2 ©0.2312 02174 0.1749 -0.0292

3 0.1109 -0.3662 -0.8682 ~0.3749

4 -2.2381 1.1831 2.8110 0.6404

5 0.2882 -0.1651 -0.3318 -0.2021

6 -0.3733 0.1715 0.9660 1.4864

7 0.5258 ~0.2569 -0.7971 -0.5135

8 0.2288 -0.4162 -0.7782 -0.5918

9 0.6302 0.1157 0.0561 0.5882

10 0.4574 -0.4063 -0.8682 -1.3604
E‘:gf‘fl‘;“ep 0.0566 03932 2.0874 0.1096
S€x 02636 0.1512 03630 0.2525

cv. . 4.6500 0.3845 " 0.1738 23038
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The table indicates the presence of influential sires in the term of sire
no. 4 which has a definite influence on the bias and length apart from moderate
influence on variance and shape. Of the four precision estimates, the jackknife
after bootstrap variance of the bootstrap estimates showed least variance for
bootstrap variance estimate followed by shape. The coefficient of variation
(C.V.) laid more emphasis on length in comparison to variance. Wherever there
is positive influence on bias there is a negative influence on variance in most
of the cases.

4. Conclusion

The different results indicate the overwhelming performance of the
parametric bootstrap in the precision of heritability estimates. The
non-parametric bootstrap also does not lag far behind. Both give better
information about the sampling distribution of h%. The variance estimation is
better performed by both these methods than the Smith and Taylor series
approximations. The performance of percentile confidence interval is better in
terms of coverage and are the shortest possible to give that coverage probability.
For fewer sires the distribution is distinctly asymmetric with the degree of
influence having a tilting influence on it. The algorithm used in parent-offspring
to do non-parametric bootstrapping performs well producing almost zero bias
and variance estimates’ close to the expected values. The influence function
estimated by means of jackknifing after bootstrapping is able to bring out
influential sire effect and the related level of influence on various precision
statistics. It also gives us an idea about the precision of the various bootstrap
precision estimates.

Though the parametric bootstrapping is the best method to be followed
under normality assumptions, it fails to take off intake of negative estimates
of heritability. In such situations non-parametric bootstrapping become
inevitable. The level of performance of non-parametric bootstrapping in the case
of worse samples is also very good. So given a practical situation the best
method to adopt is the non-parametric bootstrapping.
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